Robot Retrofitting: A Perspective to Small and
Medium Size Enterprises

Walter Fetter Lages
Federal University of Rio Grande do Sul
Electrical Engineering Department
Av. Osvaldo Aranha, 103
90035-190 Porto Alegre, RS, Brazil
w.fetterQieee.org
Alexandre Queiroz Bracarense
Federal University of Minas Gerais
Mechanical Engineering Department
Belo Horizonte, MG, Brazil
bracarense@ufmg.br

Abstract

This paper presents the authors experience
in the retrofitting of an old ASEA IRB6
robot. It was verified that the mechanical
parts of the robot were in good conditions,
but the electronics parts were very out-
dated. A new controller architecture based
on distributed system approach is proposed
to replace the original robot controller. The
hardware and software of the proposed ar-
chitecture are described and experimental
results obtained with the new controller are
presented.

I Introduction

Industrial Robots are in use for a long time.
Also, there are many works addressing the
benefits and problems faced while robotiz-
ing a given process. However, small and
medium size enterprises do not have ac-
cess to this technology mainly due to the
high costs. The high costs associated with
robotics are not due to the robot itself only,
but also due to robot accessories and pro-
gramming.

Robot accessories such as I/O, communi-
cations and other interface cards are much
more expensive than similar cards targeted
to the PC market, even when scale-of-
production effects are factored out. One of
the reasons for such over-pricing is the ab-

sence of a standard architecture for robot
controllers. Each robot manufacturer uses
its own proprietary interface and protocols,
hence robot users are forced to buy all the
system from the same manufacturer. Fur-
thermore, the marketing model used by ma-
jor robot manufacturers discourages the in-
cremental building of a robotic system. The
purchase of additional modules much later
after the installation of the robot is not an
easy proposition.

Another point to pose difficulties to small
companies is the programming of robots.
Currently most industrial robot are pro-
grammed by dedicated robot programming
languages that resembles more the Assem-
bly language of a microprocessor than a
modern programming language. Needless
to say that the training of an employee to
use such a language represents a significant
portion of the cost to install a robot. Fur-
thermore, it is not uncommon that the pro-
gramming language changes even from se-
ries to series of robots from the same man-
ufacturer, let alone from manufacturer to
manufacturer. That means that it is not
uncommon for a company to have to use
one programming language for each of its
robots.

There are commercial robot controllers
that can control robots from any manufac-
turer [7]. Such a controller eliminates the
need to learn different robot programming
languages. However, its architecture is
not open. Also, its programming language
RobotScript [3] can be used for all robots
supported by the controller. Nonetheless
RobotScript is based on VBScript, a pro-
prietary language tightly coupled to the
Windows operating system. Besides Win-
dows has not been designed with real-time

control in mind, it is known for proprietary
protocols that change from time to time.
Hence it does not appear to be appropri-
ate to serve as a basis for a standard open
architecture for robot control.

An academic initiative for generating an
open standard for robot control is the
OROCOS (Open RObot COntrol Software)
project [5]. This project is in its early stages
and does not produced a working prototype
yet. Also, it is more oriented towards the
software architecture of the whole robotic
system and does not properly address the
supporting hardware architecture.

Open hardware and software architec-
tures form robot control were defined by the
PINO project [8], but since they were de-
signed with small legged mobile robots in
mind, they do not seems adequate for in-
dustrial manipulator robots.

On the other hand, large companies are
replacing their old robots by brand-new
robots. Due to much lower costs, these dis-
posed robots would be a viable alternative
for robotizing small and medium size en-
terprises. Nonetheless, since they are old
technology robots, some benefits of using a
robot can be lost.

Fortunately, the mechanics of industrial
robots has not changed too much. The
main differences from old to newer robots
reside in the actuator power drives and con-
troller, including the software. This fact en-
ables us to upgrade old robots to current
technology by retrofitting the robot con-
troller.

This paper describes the experience of
authors in retrofitting an ASEA IRBG6
robot, including the development of an open
architecture for robot control. The pro-
posed architecture is not specifically intent

to became a standard architecture for robot
control, but should serve as a testbed to
identify some of the requirements for a stan-
dard open architecture for robot control.

The reminder of this paper is organized
as follows: Section II describes the ASEA
IRB6 robot mechanics and the steps per-
formed in order to adapt it to support the
control architecture proposed in section IV.
Section III describes the upgrades to the
electrical circuitry of the robot, while sec-
tion V describes the software proposed to
run the upgraded robot. Experiments with
the new control architecture are presented
in section VI. Conclusions and directions
for future research are discussed in section
VII.

I ASEA IRB6 Mechan-
ics

The ASEA TRB6, shown in figure 1, is a ma-
nipulator robot with five degrees of freedom
built in 1977. Since it is an old robot, be-
fore the retrofitting with a new controller,
it was completely disassembled in order to
identify and verify the parts. Same parts
damaged due to prolongated use were re-
manufactured. Figure 2 shows the first
steps in the robot disassembly.

An actuator sub-assembly is shown in fig-
ure 3. Each actuator is composed by a
D.C. motor, a resolver, a tachometer and
a sync-switch. Axis 2 and 3, which are sub-
ject to gravitational forces, include electro-
mechanical brakes.

Details of the actuator-joint couplings are
shown in figures 4 and 5. Coupling of
joint 4, not shown, is similar to coupling

Fig. 1: ASEA IRB6 robot.

| b i 1

TRy e

Fig. 2: Robot disassembly: Motors removed
(2) and (3).

Fig. 3: Actuator sub-assembly: Re-
solver (1), connector (2), tachometer (3)
and torque output point (4).

Fig. 4: Transmission for joint 1, the har-
monic drive is shown without its rigid ellip-
tic disk.

of joint 5.

After disassembly, cleaning, replacement
of damaged parts and lubrication the robot
was reassembled. In general it could be re-
marked that although it was an old robot its
mechanical parts were in good conditions.

III Electrical Upgrading

Contrarywise to the mechanical compo-
nents, the electrical components of the
robot were not in good conditions. The
original robot controller shown, in figure 6,
was not operating at all. As usual a man-

857 Exo

Fig. 5: Screw (5) and lever (3) for actuating
joint 2, lever for actuating joint 3 (4) and
coupling for joint 5 actuator (1).

Fig. 6: Original ASEA TRBG6 controller.

ual with electrical schematics of the robot
was available, but the electronics parts are
proprietary and seen as a ”black-box”.

Since the controller technology was old,
mainly based on analog electronics, it was
replaced by a new one based on an archi-
tecture developed at UFRGS an described
in section IV. From the original electri-
cal components little more than the cabling
and power supply was retained.

Originally the motors were powered by
drivers based on analog linear amplifiers,

Fig. 7: Rearranged power supply.

implying a £47V symmetrical power sup-
ply. However in the new proposed archi-
tecture, the motors are powered by PWM
amplifiers and H bridges, requiring a sin-
gle 424V power supply. Nonetheless, as
the original power supply transformers had
many taps, and playing with primary and
secondary A/Y connections, the new power
supply could be built by just rearranging
the same components used by the old one.
Figure 7 shows the reassembled power sup-
ply.

Also, as the new control architecture is
based on digital technology, resolvers and
tachometers were replaced by an incre-
mental encoder with 2048ppr. The sync-
switches were retained to serve as reference

Fig. 8: Janus manipulator.

point for the incremental encoders.

IV Control Architecture

The control architecture used in the
retrofitting of ASEA IRB6 as not developed
specifically for this robot. Actually, it was
developed for the Janus robot [6]. Janus is
an anthropomorphic manipulator (figure 8)
with two arms and a pan-and-tilt stereo vi-
sion head. Each arm has 8 degrees of free-
dom. The joints are actuated by D.C. mo-
tors. Each joint has also an incremental en-
coder, a reference position inductive sensor
and electro-mechanical brakes.

Although the architecture was designed
for the Janus robot, no adaptation was
needed to use it to control the ASEA TRB6.
That is an indication that the proposed
architecture is flexible enough to be used
with many types of robots. A general view
of the control architecture is shown in fig-
ure 9. It is a distributed processing ar-
chitecture based on the Actuator Interface
Card (AIC). Each joint has an AIC which

il e iy G

Actuator Actuator Actuator Actuator
Interface Interface Interface Interface
Card 1 Card 2 Card 3 Card N
/ I CAN bus |
Ethernet Switch
Ethernet Connection ‘

to Department Network -

Fig. 9: Control Architecture.

directly drives the joint actuator and inter-
faces with associated sensors. They com-
municate through CANbus and Ethernet
connections. It appears redundancy to have
two connections, but they are used for di-
verse types of communication. CANbus is
used for real-time data directly related to
the robot operation such as sensor reading
and actuator commands, while the Ether-
net connection is used for supervisory data
without direct relation with the robot oper-
ation. Real-time control over Ethernet con-
nection is being developed [1], but it is not
mature enough to be the basis of an indus-
trial robot controller.

The user interface runs on a PC compat-
ible computer communicating with AICs
through CANbus. This computer has also a
second Ethernet connection, thus acting as
a gateway to the department network and
to the Internet.

Note that the role of AIC in the control of
the robot is not defined by this architecture
beyond the point that it should be able to
command the joint actuator and read the
joint sensors. Behind this architecture is

the idea that each AIC is a node in a dis-
tributed control system. It can either act
as a joint controller, implementing simple
control algorithms such as PID or as an I/O
processor, with the control algorithm imple-
mented on the main computer or any other
node connected to the CANbus. To support
this kind of flexibility, the software executed
by each AIC can be uploaded through the
Ethernet connection.

The main computer runs a real time vari-
ant of the Linux operating system called
RTAI (Real Time Application Interface)
[2]. Among the advantages of RTAI is the
fact that it is possible to write hard real
time programs under user space (using the
LXRT API). Other variants of real time
Linux require hard real time tasks to be
written as kernel modules, restricting the
tools that can be used and requiring more
privileges from the user. For systems with
many users unfamiliar with Linux, that is a
serious drawback.

A block diagram of AIC is shown in fig-
ure 10. It is composed of two modules. The
processor module obviously has the proces-
sor, a real-time clock, CAN, Ethernet and
RS-232 interfaces. Currently it is imple-
mented by a Dallas Semiconductor TINI
module [4]. The interface module was spe-
cially designed for AIC. It has a SIMM72
socket for the processor module, a PWM, a
quadrature decoder, and interfaces for sync-
switch and brakes.

Since the processor module is a separate
SIMMT72 module, it can be easily changed,
without the need to redesign the interface
module, should a more powerful processor
be required in the future. In order to ac-
commodate the requirements of many types
of motors, the frequency of the PWM can

Fig. 10: Actuator Interface Card (AIC)
block diagram.

be adjusted by software. The PWM output
is connected to a MOSFET H-bridge, which
can directly drive almost any D.C. motor
used in industrial robots. The quadra-
ture decoder receives the signal from a two-
channel incremental encoder and decodes
it, recovering the direction of motion and
multiplying by four the encoder resolution.
It is directly coupled to a 16-bit counter
that stores pulses counts between processor
readings.

In the retrofitting of ASEA IRB6, each
AIC was assembled in a individual case, as
shown in figure 11. However, for application
where a higher number or AICs are needed,
such as the Janus manipulator, they can be
mounted in a standard Eurocard 19”7 rack.

V Software

The TINI module, used as AIC’s proces-
sor, provides a runtime environment that
includes a multitasking operating system
supporting memory and I/O management,
file system, a TCP/IP stack and a Java vir-
tual machine. An UNIX-like operating sys-
tem shell, based on Java, is also available.
The operating system includes TELNET,
FTP and serial console servers and a DHCP

Fig. 11: Actuator Interface Card in its case.

client.

Software running on AIC is based
on Java technology. A Java package
(br/ufrgs/eletro/AIC) was created to
model the devices connected to an AIC:
PWM, motor, encoder, sync-switch and
brakes. There are also classes to model
the whole AIC and the host interface.
Of course, each class has public meth-
ods supporting the possible operations,
for example: apply() and release() for
the Brake class and on(), off() and
set (double voltage) for the Motor class.
Although all public methods are accessi-
ble in Java, time critical methods were im-
plemented in Assembly as native methods.
The Host class abstracts the communica-
tion channel. Its derived classes HostCAN,
HostTCP and HostUDP encapsulates all de-
tails of communication with the host com-
puter.

The AIC Java package is used to build
the AIC daemon that can implement a joint
controller or simply act as an I/O proces-

sor, as discussed in section IV. This daemon
can be uploaded to AIC by using FTP and
can be called by the initialization scripts.
Since AIC has non-volatile memory, upon
power-on the daemon will be ready to com-
municate with host computer.

Currently, the retrofitting of ASEA IRB6
is using a simple daemon that behaves like
an I/O processor. It is implemented as a
multi-threaded Java program. The initial
thread handles user arguments and releases
two other threads, one to send the reading
of encoder each 10ms and other to receive
and process commands, such as motor volt-
age to be applied, sent by host computer.

On the host computer side there is a sim-
ilar structure. There are also classes model-
ing motor, encoder, sync-switch and brakes
connected to an hypothetical AIC, a class
to model the AIC itself, which is derived
to AIC_CAN AIC_TCP and AIC_UDP classes
that encapsulates the details of communi-
cation with the AICs. Therefore, the host
programmer is isolated from the communi-
cation details. The host program can be
developed as the AIC devices were local.
An important point is that the host side
is supported by a class library written in
C++. That means that although the class
and methods are similar to the ones existing
on AICs, on the host side they are imple-
mented in C++.

There are several reasons for the imple-
mentation of the host supporting library in
C++ instead of Java. Initially, C++ ap-
pears to be a better language than Java
for development of advanced control algo-
rithms. Modern control theory and robot
control in particular are largely based on
matrix algebra. The operator overloading
capabilities of C+-+ enables the develop-

Fig. 12: AIC under test.

ment of very practical matrix manipulation
libraries. Similar packages can not be build
for Java since it does not permit operator
overloading.

The host computer executes a real-time
variant of the Linux operating system called
RTAI [2]. This system does not support
the execution of Java applications in real-
time. Furthermore, standard real-time Java
specifications are mature enough, while
standards for real-time C/C++, such as
POSIX, exist for a long time and are sup-
ported by RTAI and many others real-time
operating systems.

V1 Experiments

The architecture proposed in this paper was
extensively tested in our labs. Figure 12
shows an AIC under test. Note the PWM
signal on the oscilloscope screen.

After the individual test of each AIC they
are mounted on the robot controller enclo-
sure which was adapted to receive the new
controller architecture. The new enclosure
lay-out can be seen in figures 13 and 14.

A sequence of robot motions can be seen
in figures 15- 20.

Fig. 13: Controller enclosure front view.

Fig. 14: Controller enclosure rear view. Fig. 17: Robot motion sequence.

VII Conclusion

This work described the experience of au-
thors in the retrofitting an old ASEA TRB6
robot. Although it was an very old robot it
was verified that the mechanics parts were
in good conditions as opposed to the elec-
tronics, which was replaced by a new ar-
chitecture based on distributed systems ap-
proach.

Fig. 18: Robot motion sequence.

The architecture used to replace the orig-
inal robot controller is very flexible since
it was conceived for another robot and
no modifications were needed to use it to
retrofit the ASEA IRB6. Future improve-
ments to the architecture include the devel-
opment of a single chip to implement the in-
terface module using FPGA technology and
the development of a newer interface mod-
ule to handle actuators powered by A.C.
motors. Currently it is under development
an interface module to integrate 6-axis force
and torque sensors in the same architecture.

Fig. 19: Robot motion sequence.

From the software point of view, the pro-
posed system is based on Java and C++,
which are current programming languages
and therefore the cost for training robot
programmers should be very reduced. Typ-
ically, only the C++ interface will be visi-
ble to the user through class libraries that
masks out the details of communications
with AICs. Future directions include the in-
tegration of the system with libraries that
handle robot control at a higher level. A
promising approach in this direction is the
integration of C++ library for robot control
Fig. 20: Robot motion sequence. with off-line programming packages such as

Workspace.

10

Acknowledgments

The first authors was partially supported
by the Research Support Foundation of the
State of Rio Grande do Sul (FAPERGS),
Brazil, through the Support Program for
Scientific and Technological Development
in Information Technology (PROADI) un-
der grant number 01/05670.

Second author was partially supported
by the Research Support Foundation of the
State of Minas Gerais (FAPEMIG), Brazil,
under grant number TEC 2471/98.

This work was also supported by RE-
COPE/MANET (Manufacturing Automa-
tion Network).

References

[1] G. H. Alt, R. da Silva Guerra, and
W. F. Lages. An assessment of real-
time robot control over IP networks.
In Proccedings of the Fourth Real-
Time Linux Workshop, pages 1-17,
Boston, USA, 2002. University of
Boston, Computer Science Department.
http://www.realtimelinuxfoundation.org
/events/rtlws-2002/paper.html
#PAPER,_g09_Alt.

P. Cloutier, P. Mantegazza, S. Pa-
pacharalambous, 1. Soanes, S. Hughes,
and K. Yaghmour. DIAPM-RTAI po-
sition paper, nov 2000. In Real-Time
Operating Systems Workshop, pages 1—
28, Milano, Italy, 2000. Dipartimento di
Ingegneria Aerospaziale, Politecnico di
Milano. http://www.rtai.org.

J. Lapham. RobotScript the introduc-
tion of a universal robot programming

11

language. Industrial Robot, 26:17, 1999.
http://www.rwt.com/main/articles/
robotscript.html.

D. Lommis. The TINI Specification and
Developpers Guide. Addison-Wesley,
Boston, MA, 2001.

OROCOS. Open robot control software,
2002. http://www.orocos.org.

R. Reginatto and W. F. Lages. Satu-
ration compensation in the control of
janus robot manipulator. In Anais
do XIV Congresso Brasileiro de Au-
tomdtica, pages T74-79, Natal, RN,
Brazil, 2002. Sociedade Brasileira de
Automaética.

URC. Universal robot controller, 2003.
http://www.rwt.com/main/urc.html.

F. Yamasaki, K. Endo, M. Asada, and
H. Kitano. Energy-efficient walking for
a low-cost humanoid robot, PINO. Al
Magazine, 23(1):60-61, 2002.

